Step of Proof: fincr_wf
12,41
postcript
pdf
Inference at
*
1
3
1
0
1
1
1
I
of proof for Lemma
fincr
wf
:
1.
P
:
2.
j
:
. (
k
:
. (
k
<
j
)
(
P
(
k
)))
(
P
(
j
))
3.
zz
:
n
:
. (
n
<
zz
)
(
P
(
n
))
latex
by
InteriorProof
(NatInd (-1))
latex
1
: .....basecase..... NILNIL
1:
2.
j
:
. (
k
:
. (
k
<
j
)
(
P
(
k
)))
(
P
(
j
))
1:
n
:
. (
n
< 0)
(
P
(
n
))
2
: .....upcase..... NILNIL
2:
3.
zz
:
2:
4. 0 <
zz
2:
5.
n
:
. (
n
< (
zz
- 1))
(
P
(
n
))
2:
n
:
. (
n
<
zz
)
(
P
(
n
))
.
Definitions
-
n
,
{
x
:
A
|
B
(
x
)}
,
n
+
m
,
Type
,
Void
,
s
=
t
,
x
:
A
B
(
x
)
,
,
a
<
b
,
n
-
m
,
f
(
a
)
,
#$n
,
,
,
i
j
,
A
B
,
A
,
False
,
P
Q
,
x
:
A
.
B
(
x
)
,
t
T
Lemmas
nat
wf
,
nat
ind
tp
,
ge
wf
,
nat
properties
origin